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a b s t r a c t

Onset latencies of evoked responses are useful for determining delays in sensory pathways and for indi-
cating spread of activity between brain areas, therefore inferring causality. Previous studies have applied
several different methods and parameters for detecting onsets, mainly utilizing thresholds based on the
mean and standard deviation (SD) of the pre-stimulus “baseline” time window, or using t-tests of group
data to determine when the response first differs significantly from the baseline. However, these meth-
ods are not statistically robust, have low power when the baseline data are not normally distributed, and
are heavily influenced by outliers in the baseline. Here, we examine using a modified boxplot method
known as the “median rule” for determining onset latencies. This rule makes no assumptions about the
baseline distribution, is resistant to outliers, and can be applied to individual level data therefore allow-

ing intersubject and interregional comparisons. We first show with simulations that the median rule is
significantly less sensitive to outliers in the baseline than the SD method. We then use simulations to
demonstrate the effect of skewness on onset latencies. Finally, we use magnetoencephalography (MEG)
to show that the median rule can be easily applied to real data and gives reasonable results. In most
situations the different methods give similar results, which enhances comparability across studies, but
in data sets with a high noise level there is a clear advantage to using a statistically robust method. In
conclusion, the median rule is an excellent method for estimating onset latencies in evoked responses.

© 2010 Elsevier B.V. All rights reserved.
. Introduction

Latency differences across brain areas reflect delays in sensory
athways, provide insight into how information flows through
he brain for both bottom-up and top-down processing, and indi-
ate causal relationships between areas (Foxe and Simpson, 2002;
horpe et al., 1996). In the cortex, latencies can be studied using
voked responses (ERs) recorded with electro- and magnetoen-
ephalography (EEG/MEG). Since ERs in any given brain area consist
f several waves of recurrent (re-entrant) activations, the clearest
icture of how activations spread throughout the brain is achieved
y studying the onsets of responses across areas.
Measuring onset latencies requires criteria to detect the pres-
nce of a response. This can be achieved by defining an amplitude
hreshold based on the pre-stimulus baseline typically consist-
ng of all samples 100–200 ms before stimulus onset. A frequently

Abbreviations: EEG, electroencephalography; EOG, electro-oculogram; ER,
voked response; MEG, magnetoencephalography; SD, standard deviation.
∗ Corresponding author at: Martinos Center, Bldg 149, 13th Street, Charlestown,
A 02129, USA. Tel.: +1 617 230 4341; fax: +1 617 726 7422.

E-mail address: raij@nmr.mgh.harvard.edu (T. Raij).

165-0270/$ – see front matter © 2010 Elsevier B.V. All rights reserved.
oi:10.1016/j.jneumeth.2010.10.016
encountered method for defining the response threshold is a t-test,
which is used to compare post-stimulus time points with the base-
line distribution. In this method, the ERs of several subjects are used
to create a distribution of response amplitudes at each time point.
These distributions are then compared to the baseline and a sig-
nificant departure from the baseline mean (p < 0.05) indicates the
onset of the response (Allan and Rugg, 1997; Doniger et al., 2000;
Fernandez et al., 1999; Foxe and Simpson, 2002; Molholm et al.,
2002; Rugg et al., 1993, 1995). However, this method can only be
used to find the onset latency of an ER averaged across subjects.
It does not inform about the distribution of onset latencies across
subjects or the error in the measure of onset latency, making it dif-
ficult to accurately compare onset latencies across brain regions or
subject populations (Foxe and Simpson, 2002).

Another widely used method for defining the threshold, which
can be applied to ERs of individual subjects, is to compute the mean
and standard deviation (SD) of the baseline, and then to set a thresh-
old at a certain level of SDs over the mean. The idea is that data

points above the threshold are unlikely to come from the same dis-
tribution as the baseline (presumably consisting of noise) and thus
are likely to be a part of the evoked response. However, noise levels
vary across studies, and publications have used values as different
as 2 SDs (Inui et al., 2006), 2.5 SDs (Foxe and Simpson, 2002; Osman

dx.doi.org/10.1016/j.jneumeth.2010.10.016
http://www.sciencedirect.com/science/journal/01650270
http://www.elsevier.com/locate/jneumeth
mailto:raij@nmr.mgh.harvard.edu
dx.doi.org/10.1016/j.jneumeth.2010.10.016


oscien

e
R

t
i
b
a
S
a
t
w
s
m
l
w
F
2
e
1
t
u
i
1
d
W
c
d

m
n
n
t
t
w
2
t
d
s
t
2

i
a
t
e
l
m
(
t
w
S
m
t
e

t
w
f
r
o
a
u
t
w
e
W

B. Letham, T. Raij / Journal of Neur

t al., 1992; Smulders et al., 1995), and 3 SDs (Martin et al., 2007;
aij et al., 2010) which makes comparisons across studies difficult.

In addition to defining a threshold, most studies have required
hat the response stays above the selected threshold for a min-
mum duration to be considered the real onset. This is useful
ecause physiological signals often have brief peaks unassoci-
ted with the actual response which can easily exceed the 2–3
D or p < 0.05 thresholds. Increasing the threshold safeguards
gainst such outliers, but at the same time quickly decreases
he sensitivity of the test, which is relevant especially for ERs
ith gradual onsets. Consequently, most studies balance sen-

itivity and specificity by combining a lower threshold with a
inimum duration reflecting the number of consecutive out-

iers. The values for minimum response durations have varied
idely from 10 ms (Foxe and Simpson, 2002), 16 ms (Rodriguez-

ornells et al., 2002; van Schie et al., 2004), 20 ms (Doniger et al.,
000; Molholm et al., 2002; Raij et al., 2010), 81 ms (Fernandez
t al., 1999), 84 ms (Rugg et al., 1995), 100 ms (Osman et al.,
992; Osman and Moore, 1993; Smulders et al., 1995), even up
o 112 ms (Allan and Rugg, 1997). When onsets are measured
sing t-tests, there are statistically rigorous methods for choos-

ng a minimum duration (Achim, 1995; Gutherie and Buchwald,
991); however, these methods are complex and most studies
o not report which method, if any, was used to find the value.
hen using the SD method, statistically rigorous methods for

hoosing a minimum duration have to our knowledge not been
escribed.

Clearly there is no consensus as to the proper threshold or
inimum duration constraint. Moreover, the above methods are

ot statistically robust. Statistically robust methods are resilient to
oisy data, particularly outliers, and do not assume anything about
he form of distribution of the baseline data. A key assumption of
he t-test is that the baseline is sampled from a normal distribution,
hich in general is not the case for MEG/EEG (Leonowicz et al.,

005). Moreover, the t-test has been shown to be very sensitive
o outliers (Wilcox, 2005). Similarly, while an SD-based threshold
oes not explicitly assume a particular distribution, it has been
hown to be overly sensitive to outliers and is a poor represen-
ation of data with a skewed distribution (Wilcox and Keselman,
003).

When comparing different methods it is useful to exam-
ne how accurately they reflect the central tendency (value
round which the data cluster) and dispersion (variability) of
he data. For normally distributed data the mean and SD are
fficient descriptions, but the presence of even just a few out-
iers in the pre-stimulus baseline can drastically influence the

ean and SD and will lead to unrealistically high thresholds
Wilcox and Keselman, 2003). It is advantageous to use sta-
istically robust measures instead, i.e., measures that perform
ell for non-normal distributions, including those with outliers.

tatistically robust measures of central tendency include the
edian, Winsorized means, and M-estimators, and of dispersion

he interquartile range and the median absolute deviation (Hoaglin
t al., 1983).

There are several statistically robust methods for outlier detec-
ion, an idea analogous to measuring onset latencies, one of
hich is the boxplot (Hoaglin et al., 1983). A particularly use-

ul variant of the boxplot outlier method is called the median
ule (Carling, 2000). This rule, like the SD method, is capable
f estimating the onset latency from ERs of individual subjects,
llowing the variance to be estimated. Here, we will use sim-

lations to demonstrate that onset latencies measured using
he median rule are in fact robust in the presence of outliers
hile those measured with the SD method are not, and we will

xamine the effect of skewness on measures of onset latency.
e then use MEG data to demonstrate that the method can
ce Methods 194 (2011) 374–379 375

easily be applied to real data and that it produces reasonable
results.

2. Materials and methods

2.1. The median rule and properties

Boxplot rules for outlier detection are based on quartiles, which
form a statistically robust description of the data. The second quar-
tile (q2) is the sample median, and the first and third quartiles (q1
and q3) define the interquartile range q3 − q1. The classical boxplot
defines outliers as points that fall above q3 + 1.5(q3 − q1) and below
q1 − 1.5(q3 − q1) (Tukey, 1977). The median rule is a modification
of the boxplot outlier rule that performs better especially for small
sample sizes (Carling, 2000). It uses the median together with the
interquartile range and defines outliers as points that fall outside
q2 ± 2.3(q3 − q1). Boxplot rules have a breakdown point of 0.25, i.e.,
up to 25% of the data can be outliers without problem. There are
other rules with higher breakdown points (e.g., using median abso-
lute deviation), but for ERs a breakdown point of 0.25 should in
practice be sufficient. The median rule performs well even with
relatively small sample sizes (Carling, 2000), which are frequently
used in neurophysiological studies.

2.2. Defining quartiles

The way in which quartiles are defined influences the perfor-
mance of boxplot rules (Frigge et al., 1989). The several approaches
differ mainly in how interpolation between data points is done.
The best results with the median rule have been achieved using a
method called ideal fourths (Carling, 2000; Hoaglin and Iglewicz,
1987). As described by Carling (2000), for an ordered data set x,
each quartile is a linear interpolation between two data points in
x : (1 − g)x(j) + gx(j+1). For the first quartile, the indices of the data
points used for interpolation (j) and the amount of interpolation
(g) are the integer part (j) and remainder (g) of n/4 + 5/12. For the
third quartile, j and g are the integer part and the remainder of
3n/4 + 7/12. The second quartile is simply the sample median. Using
ideal fourths reduces bias in the median rule compared with simple
interpolation (Carling, 2000).

For neurophysiological time series data, the median rule can
be applied by computing the quartiles of the baseline data
and then finding the first post-stimulus point that falls outside
q2 ± 2.3(q3 − q1). Here we study waveforms with positive activa-
tion and therefore use the threshold q2 + 2.3(q3 − q1). For normally
distributed noise, the median rule is equivalent to 3.1 SDs over the
mean.

2.3. Simulation 1 – Robustness to baseline outliers

We first measured onset latency of a function with known onset
to which normally distributed noise was added. Fig. 1A shows an
example data set with the measured onset latencies. The base func-
tion extended from -200 ms to +200 ms, was sampled at 1 kHz, and
had an onset at 30 ms to a stimulus at 0 ms. After onset, the response
increased linearly to its maximum value of 100. Thus, the time
window from -200 ms to 0 ms was the pre-stimulus baseline (200
samples) and the true onset latency 30 ms. Normally distributed
noise with mean 0 and standard deviation 10 (i.e., 10% of the max-
imum response amplitude) was added to the base function, and
onset latencies were measured using the median rule and the SD

method (3.1 SD threshold). The t-test method cannot be compared
with the other methods that use individual simulated data sets and
was thus not included in this comparison. Ten thousand simulated
data sets were generated to achieve a stable estimate of onset laten-
cies, each with the same base function but different noise sample.
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Fig. 1. Onsets for a simulated response with normally distributed noise. Both Panels A and B show a ramp function (thick solid grey line) with known onset at 30 ms (vertical
dashed grey line) to which normally distributed noise (mean = 0, SD = 10) has been added. There is a “pre-stimulus baseline” from −200 ms to 0 ms. The black horizontal
dashed line is the onset threshold for the median rule, q2 + 2.3(q3 − q1), and the black horizontal dotted line for the SD method (mean plus 3.1 SDs). The onset latency is the
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rst post-stimulus point above threshold, and is marked with a corresponding verti
our randomly chosen baseline points are replaced with outliers at 4 SDs. Adding o
nset measured with the median rule remains correct.

Fig. 1B shows data simulated in an identical way as above except
hat four randomly selected baseline points in each of the simu-
ated data sets were replaced with outliers at 4 SDs. Onset latencies

ere re-measured for the simulated data sets with outliers. This
easures robustness of the methods to outliers during the baseline.

.4. Simulation 2 – Effect of skewness on onset latency

The second simulation studied the effect of skewness on mea-
ures of onset latency. Data sets were generated as in simulation 1
ut with skewed instead of normally distributed noise. The noise
as sampled from the skew normal distribution, a generalization

f the normal distribution that is defined by a shape parameter
n addition to the location and scale parameters of the standard
ormal distribution. When the shape parameter is set to 0, the
kew normal distribution is identical to the normal distribution
ith the same location and scale parameters. A negative shape
arameter corresponds to negative skewness and a positive shape
arameter corresponds to positive skewness. With the skew nor-
al distribution it is possible to vary skewness while holding mean

nd SD constant. For this simulation the mean was set to 0 and
he SD was set to 15, while the skewness was varied from −8
strongly negatively skewed) to +8 (strongly positively skewed).
n order to use the t-test method for this simulation, we created
group averages” by averaging a small number (N = 4) of simu-
ated ERs. An example of such a group average can be seen in
ig. 2A. The average ER was used to measure onset latency with
he median rule and the SD method, and the t-test method was
pplied to the group of 4 ERs. As before, this was repeated 10,000
imes for each value of the skewness parameter to obtain a sta-
le result. Since N = 4 is unrealistically small for most applications,
he simulation was finally repeated with N = 24 in each group aver-
ge.

.5. Real MEG evoked responses

These data are a subset of those previously reported in Raij

t al. (2010). We presented 300-ms auditory, visual, and audiovisual
combined auditory and visual) stimuli to eight healthy right-
anded human subjects (six females, age 22–30). The auditory
timuli were binaurally presented white noise bursts and the visual
timuli foveally presented static checkerboard patterns. The inter-
e. In Panel A no outliers are added to the pre-stimulus baseline, whereas in Panel B
significantly delays the onset latency measured with the SD method, whereas the

stimulus interval was pseudorandom, with a range of 1.15–3.45 s
and mean of 1.5 s.

Whole-head 306-channel MEG (VectorView, Elekta-Neuromag,
Finland) was recorded in a magnetically shielded room (Cohen
et al., 2002; Hämäläinen and Hari, 2002) simultaneously with
horizontal and vertical electro-oculogram (EOG). All signals were
band-pass filtered to 0.03–200 Hz prior to sampling at 600 Hz.
Responses were averaged offline time locked to the stimulus onsets
with a time window of 250 ms pre-stimulus to 1150 ms post-
stimulus. A total of 125 individual epochs for each stimulus type
were acquired. Epochs exceeding 150 �V at any EOG channel or
3000 fT/cm at any MEG channel were automatically discarded from
the averages. The averaged signals were digitally low-pass fil-
tered at 40 Hz and amplitudes were measured with respect to
a 200-ms pre-stimulus baseline. Gradient amplitude responses√

x2 + y2 were calculated from the two planar gradiometers x and
y at each sensor location and onsets were measured from these
responses. Since such responses can only have positive values, we
here examine onsets for upward deflections. However, the meth-
ods are equally applicable to normal EEG/MEG responses that have
both positive and negative values.

Data are analyzed from two sensor locations, one over the
supratemporal auditory cortex in each hemisphere, selected for
each subject individually at the location that shows the strongest
100-ms response to the unimodal auditory stimuli. Here we report
onset latencies to the audiovisual stimuli only, additionally con-
straining the onset to be no earlier than 15 ms. Onsets were
computed for each individual’s data set using the median rule at
q2 + 2.3(q3 − q1) threshold and the SD method at 3.1 SD threshold.
The t-test method cannot be used for individual level responses
and was thus applied only to the group data. Minimum duration
constraints were not used with any method.

3. Results
P values below were computed using the Wilcoxon signed rank
test, a non-parametric statistical test similar to a paired t-test. For
onset latencies, a distribution free 95% confidence interval for the
median was computed in R with the freely available program “sint”
(http://r-forge.r-project.org/projects/wrs/) (Wilcox, 2005).

http://r-forge.r-project.org/projects/wrs/
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Fig. 2. Effect of skewness on onset latency. Simulated data were generated as in Fig. 1, but with varying skewness while holding mean and SD constant. Data were simulated
in groups of four (N = 4) which were then averaged to create a “group average” ER, an example of which is shown in Panel A. As in Fig. 1, the known onset is at 30 ms (vertical
dashed grey line), and the black lines indicate the threshold (horizontal) and onset (vertical) measured with the median rule (dashed lines) and with the SD method (dotted
lines). The onset of the group measured with the t-test is indicated with an arrow. The direction and degree of skewness is manipulated with a parameter, which can be
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egative, zero for unskewed, or positive. Panel B shows median onset latency for
kewness. For all methods, onset latencies decrease as skewness becomes more po
or moderate positive skewness. The onsets detected by the t-test (solid line) were c
Rs in the average was increased (N = 24) the effect of skewness became insignifica

.1. Robustness to baseline outliers

Fig. 1 shows an example simulated data set with normally dis-
ributed noise, without added outliers in Fig. 1A and with four
dded outliers in Fig. 1B. The thresholds were computed using
he median rule (dashed horizontal line) and the SD method (dot-
ed horizontal line). Onset is the first post-stimulus time point
bove threshold, marked with vertical dashed and dotted lines for
edian rule and SD method, respectively. Across all 10,000 simu-

ated data sets, with no added outliers (Fig. 1A) the median onset
atencies were 49 ms (95% confidence interval 48–49 ms) with both
he median rule and the SD method. These were not significantly
ifferent (p = 0.32). With added outliers (Fig. 1B) the onset latency

ncreased by 1 ms (2%) to 50 ms (50–50 ms) with the median rule,
nd by 5 ms (10%) to 54 ms (54–54 ms) with the SD method. These
nset latencies were significantly different (p < 2 × 10−16).

.2. Onset latencies with skewed noise

Fig. 2A shows an example “group average” of 4 ERs with positive
kewness (shape parameter +8). The median rule and SD method
nsets are labeled as in Fig. 1. The onset measured with the t-test
s labeled with an arrow. The median onset latencies varied with
kewness for all three methods as shown in Fig. 2B. Both the upper
nd lower bounds of the 95% confidence interval were equal to
he median for all methods. Negative skewness delayed the mea-
ured onset while positive skewness resulted in earlier onsets. For
egatively skewed noise the SD method and the median rule gave

dentical results, though for moderately skewed data the median
ule onset was earlier by 1 ms (p <2 × 10−16). Initially, median onset
atency with the t-test method was less than 15 ms for all values
f the shape parameter, which is earlier than the true onset and
learly a false positive. To receive any reasonable results using the
-test, we therefore had to apply the minimum duration require-

ent: four consecutive time points had to satisfy p < 0.05 for the

nset (the first data point of the four below threshold) to be con-
idered real (Gutherie and Buchwald, 1991). No such constraint was
equired with the median rule or the SD method. The resulting
nset latency measured with the t-test was several milliseconds
ater for all amounts of skewness (p < 2 × 10−16)
ree methods across 10,000 simulated “group averages” with varying amounts of
. The median rule and SD method (dashed and dotted lines) were identical except
longer than for the other methods for all values of skewness. When the number of

t shown, see text for details).

With 24 ERs in the group average, noise levels were significantly
reduced and the median onset latency was 37 ms (37–37 ms) with
both the median rule and the SD method, and 38 ms (38–38 ms)
with the t-test. These median onset latencies did not vary with
skewness.

3.3. MEG evoked responses

Fig. 3 shows the MEG data collected across all subjects from sen-
sors over the left (Panel A) and right (Panel B) hemisphere auditory
cortices. The group level mean ER is indicated with the thick black
line and the 95% confidence intervals calculated via percentile boot-
strapping with the grey lines. The individual baselines for each of
the ERs were checked for normality using the Lilliefors test, reveal-
ing that 12 of the 16 baselines (2 hemispheres in each of 8 subjects)
were significantly different from the normal distribution (p < 0.05).

For the SD method, median onset latency was 37 ms (26–45 ms)
over the left and 39 ms (28–47 ms) over the right auditory cor-
tex. With the median rule, the median onset latency was 39 ms
(28–43 ms) over the left and 39 ms (28–49 ms) over the right audi-
tory cortex. The median rule did not differ significantly from the
SD method in either hemisphere (p = 0.42 for both). Using the t-test,
onset latency of the group level mean data was 37 ms in the left and
33 ms in the right auditory cortex (error estimates or confidence
intervals cannot be calculated using this method – thus, statisti-
cal comparisons between the t-test method and other techniques
could not be done).

4. Discussion

The results show that the median rule is a useful tool for mea-
suring onset latencies of ERs. Simulations indicate that this rule is
not overly sensitive to outliers as are methods based on SD thresh-
olding. The median rule can easily be applied to real MEG data, and
at group level produces results comparable to those obtained with
SD thresholding and t-tests.
Previously widely used methods for measuring onset latencies
are suboptimal. The t-test assumes that the population from which
the baseline is sampled is normally distributed. EEG/MEG data sets
are non-stationary and heavy-tailed, which is inconsistent with
an assumption of normality (Chau et al., 2004; Palus, 1996). Out-
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Fig. 3. Onsets for group level MEG responses. The median rule, SD method, and t-test method were applied to MEG ERs collected from 8 subjects. The group level mean
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R (thick black line) is shown with 95% confidence intervals (grey lines) for selecte
sed to find the onset latency at the group level (black arrows). For comparison, we
dashed line) and SD method (dotted line). As expected for reasonable quality data,

iers and heavy tails significantly reduce the statistical power of
he t-test (Benjamini, 1983; Wilcox, 2005). In the context of onset
atencies this translates to poor detection sensitivity. The t-test is
lso based on standard deviation, which is a non-robust measure
f variability that is overly sensitive to outliers as demonstrated
y the simulations. Most importantly, the t-test can only be used
o measure onset latency from an ER averaged across subjects and
ives no estimate of the variance in onset latencies across subjects.
ithout variances, it is impossible to make statistical comparisons.

ome studies have adapted the t-test method to individual subjects
y windowing the data to create the pointwise distribution rather
han forming the distribution across subjects (Rodriguez-Fornells
t al., 2002; van Schie et al., 2004). However, windowing further
educes sensitivity and requires an arbitrary selection of window
ize.

SD thresholds have been used extensively for outlier detection,
espite having been shown to be ineffective due to their sensi-
ivity to outliers (Wilcox and Keselman, 2003). Our simulations
onfirmed that the SD method is overly sensitive to outliers. With
ormally distributed noise, the onset latencies measured with the
edian rule and the 3.1 SD threshold were identical, as they theo-

etically should be. Replacing only two percent of the baseline data
oints with outliers delayed the SD onset such that it was signifi-
antly later than the median rule onset by 4 ms. The median rule
roduces a statistically more correct representation of the data, and

s not affected as strongly by a relatively small number of outliers
n the data.

All measures of onset latency are sensitive to skewness in
ata with high noise levels. When attempting to detect a positive
eflection, positive skewness increases the probability of a random
oise sample crossing threshold thereby decreasing the measured
nset latency. Correspondingly, a negative skewness increases the
bserved onset. While in this study we analyzed responses that
an only have positive values, typical evoked EEG/MEG responses
ave both positive and negative deflections. For negative deflec-
ions, the relations between direction of skewness and latency
hange are reversed: positive skewness increases and negative
kewness decreases the observed onset latency. Skewness is often
hanged by elementary operations, for example if the noise in two

lanar gradiometers is normally distributed (unskewed) then the
ector magnitude will follow a Rayleigh distribution (positively
kewed). One should therefore exercise caution when comparing
nset latencies between studies that have clearly different noise
evels or use dissimilar computational methods that differentially
or locations over the left (A) and right (B) auditory cortices. The t-test can only be
how the median values of the onsets across individual subjects for the median rule
sults were similar across all three methods.

influence noise level and skewness. However, the results of the sim-
ulation with N = 4 were a worst-case scenario with high noise and
few averages. The effects of skewness on onset latency disappear
with a large number of subjects.

Statistically robust methods would be particularly important for
applications in which only a few trials (segments of raw data) are
used for calculating ERs and noise levels are very high (Leonowicz
et al., 2005). However, the median rule can be useful in all data sets,
even in those with low noise levels. Using robust measures in future
onset latency studies does not invalidate previously published
results. In our real data from 8 subjects the difference between
boxplot and SD onset latencies was not significant. The t-test laten-
cies fell within the confidence intervals of both the other methods,
although they could not be compared statistically because of the
limitations of the t-test method. The lack of a consistent method for
measuring onset latencies makes comparisons of different studies
difficult. An ideal method should not make assumptions about the
shape of the ER or the distribution of the baseline. For outlier detec-
tion, boxplot rules such as the median rule are widely used and have
been proven versatile enough for a wide range of applications. The
median rule is both statistically robust and easy to implement. Code
for implementing the median rule is available in Wilcox (2005).

A requirement that the data stay above threshold for a certain
period of time is arbitrary and therefore poorly justified unless done
in a statistically rigorous way (Achim, 1995). A statistically rigor-
ous requirement has not been developed for the median rule or
SD method. Therefore we propose that when constraints are nec-
essary, they should be based on the physiology of the response,
which may vary across applications. For instance, in intracranial
recordings it takes about 15 ms for activations to reach the auditory
cortex (Celesia, 1976). Thus, when measuring the evoked response
over auditory cortex, a physiologically relevant constraint would
be to require that onset can occur only after 15 ms, as was done in
this study. When interested in the onset of only the main (which
is not necessarily the earliest) component of a response, a relevant
constraint would be to choose the onset that stays above thresh-
old longest (Maris and Oostenveld, 2007). Ideally, such constraints
should be chosen when designing the experiment and not applied
post hoc.
We have shown through simulations and with real data that the
median rule, a statistically robust outlier detection method, is sim-
ple and effective for measuring onset latencies of evoked responses.
As opposed to previously used methods, the median rule makes no
assumptions about the distribution of the data, is not sensitive to
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utliers in the pre-stimulus baseline, does not require additional
onstraints, and can be applied to finding the onset of individual
Rs. Simulations show that the median rule performs well even for
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