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Abstract

The theory of NP-completeness has its roots in a foundational result by Cook, who showed
that Boolean satisfiability (SAT) is NP-complete and thus unlikely to admit an efficient solution.
We prove an analogous result using binary integer programming in the place of SAT. The proof
gives deeper insight into the theory of NP-completeness to operations researchers for whom the
language of integer programming is more natural than that of Boolean logic.

1 Introduction

In 1971, Cook [1] provided the first proofs that a collection of problems of practical interest are NP-
complete, meaning that they are, in a particular sense, among the hardest problems in NP. Since that
time, the theory of NP-completeness has guided researchers to either find efficient algorithms, or to
know when to stop looking and to focus on approximation schemes. The theory of NP-completeness
is critically important for operations researchers, as demonstrated by the extensive literature on
proving various problems in operations research are NP-hard [see 2, 3, 4, 5, for example].

Almost all proofs of NP-completeness base themselves on reductions from problems that have
already been proven to be NP-complete. At the root of all of these reductions lies Cook’s theorem,
the foundational result in the theory of NP-completeness which showed that the Boolean satisfia-
bility problem (SAT), among other problems, is at least as hard as every other problem in NP. This
first proof of NP-completeness appeals to Turing machines and the definition of the set NP.

The standard proof of Cook’s theorem [6, for example] relies on using Boolean constraints to
model the way in which a Turing machine solves an arbitrary problem in NP. Operations researchers
are likely more familiar with the language of integer programming than the language of Boolean
satisfiability. We provide and prove an analog to Cook’s theorem based on the zero-one integer linear
programming feasibility problem (ZOIP), rather than SAT. The proof gives operations researchers
easier understanding of and deeper insight into this fundamentally important result.
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2 Turing machines and the class NP

NP is a class of decision problems, that is, problems for which every instance is either a yes instance
or a no instance. For example, an instance of ZOIP is a collection of linear constraints over binary
variables, which is either feasible (yes instance) or not (no instance). A decision problem is in NP
if for every yes instance there exists a corresponding certificate that can be verified in polynomial
time. A certificate for a ZOIP yes instance is a feasible solution, which can be verified in polynomial
time simply by checking that all of the constraints are satisfied. The idea of the proof is to show
that for an arbitrary problem in NP, the process by which a Turing machine verifies the certificate
to a yes instance can be modeled with zero-one integer linear constraints. We thus proceed with a
brief description of Turing machines to introduce the necessary definitions and notation.

A deterministic one-tape Turing machine (DTM) is an abstract computing device consisting of
a tape, a state, and a read/write head. The tape is an infinite sequence of squares, each square
containing a symbol from an alphabet of v distinct symbols, labeled 1, . . . , v. Each square is given
an integer label, extending towards both positive and negative infinity from square 0. At any step
of computation the read/write head is located over a single square. Throughout the computation
the read/write head moves along the tape, reading and writing symbols. The state of the machine
at any step of computation is one of a set of r distinct states, labeled 1, . . . , r.

Computation begins with the machine in state 1, the read/write head located at square 1,
and both the problem instance and its certificate written on the tape. The problem instance and
certificate are encoded using symbols from the tape alphabet (1, . . . , v) as x = x1, . . . , xn and
y = y1, . . . , ym respectively. The problem instance is written to the tape on squares 1 through n
and the certificate is written in squares −1 through −m. All other squares (square 0, squares above
n, and squares below −m) are initialized with a special “blank” symbol, which we label as symbol
1.

A step of computation on a DTM consists of three main dynamic elements: the machine state is
updated, the symbol in the current square is overwritten by a new symbol, and the read/write head
is moved to a new square. These changes proceed according to a predetermined set of instructions,
and depend on the current state of the machine and the symbol that is currently being read by the
read/write head. Suppose the machine is in state k and the current square contains symbol l. The
state update instructions are contained in an r × v matrix AQ, of which each element takes values
in {1, . . . , r}. The element AQ

k,l contains the new state of the machine, given the current state k and
the current symbol l. Similarly, the symbol update instructions are contained in an r × v matrix
AS , of which each element takes values in {1, . . . , v} with element AS

k,l being the new symbol that
is written in the current square. Finally, the update to the head position follows an r × v matrix
AH of which each element is +1 or −1, indicating that the head moves one square to the right or
to the left, respectively.

Computation is finished and the machine halts when one of two special states, state yes or state
no, is reached. We label the yes and no halting states as states 2 and 3 respectively. For any
problem Π in the class NP, there exists a DTM M and a polynomial p(n) such that M halts in
state yes in at most p(n) steps of computation if and only if x is a yes instance to Π and y is a
corresponding certificate.

We finally define NP-completeness. A problem Π1 is polynomially reducible to Π2 if there exists
a polynomial transformation f that maps each instance x of Π1 to an instance f(x) of Π2 with the
property that f(x) is a yes instance of Π2 if and only if x is a yes instance of Π1. A problem Π is
called NP-complete if it is in the class NP, and every other problem in NP is polynomially reducible
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to Π.

3 Modeling a DTM using ZOIP

The insight behind Cook’s original result was that an arbitrary DTM could be modeled using a
collection of boolean formulas. Here we use a similar strategy to show that an arbitrary DTM
can be modeled using zero-one integer linear constraints. The proof parallels that given for SAT
in Garey and Johnson [6]. We introduce three sets of decision variables: Q for the state of the
machine, H for the location of the head, and S for the symbols on the tape. Specifically, we design
the constraints so that

Qi,k =

{
1, if state is k at step i

0, otherwise

Hi,j =

{
1, if head scans square j at step i

0, otherwise

Si,j,l =

{
1, if square j has symbol l at step i

0, otherwise.

We now enumerate the properties of a DTM, and specify the sets of constraints that ensure these
variables will faithfully model the DTM.

3.1 Decision variables and machine components

We are primarily interested in determining if the DTM enters state yes by computation step p(n),
as this is a necessary and sufficient condition for x to be a yes instance. Thus we need to model
only steps i = 0, . . . , p(n) of computation. Similarly, because the read/write head moves only one
square per step of computation, it is sufficient to consider squares j = −p(n) + 1, . . . , p(n) + 1. We
consider the full range of states k = 1, . . . , r and the full range of symbols l = 1, . . . , v.

At each step of computation i, the DTM is in exactly one state, scans exactly one square, and
each square on the tape contains exactly one symbol. These constraints are naturally expressed in
the language of ZOIP modeling:

Qi,k ∈ {0, 1}, ∀i, k, (1)

Hi,j ∈ {0, 1}, ∀i, j, (2)

Si,j,l ∈ {0, 1}, ∀i, j, l, (3)
r∑

k=1

Qi,k = 1, ∀i, (4)

p(n)+1∑
j=−p(n)+1

Hi,j = 1, ∀i, (5)

v∑
l=1

Si,j,l = 1, ∀i, j. (6)
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3.2 Initial conditions

Recall the starting conditions for the DTM: The state is 1, the read/write head scans square 1,
square 0 is blank, squares 1 through n contain the input x, squares −1 through −m contain the
certificate y, and the remaining squares are blank. As ZOIP constraints,

Q0,1 = 1, (7)

H0,1 = 1, (8)

S0,0,1 = 1, (9)

S0,j,xj = 1, j = 1, . . . , n, (10)

S0,j,1 = 1, j > n. (11)

Given an instance x, we do not necessarily know its certificate: We know only that if x is a yes
instance (the case of interest) then a certificate exists. We leave S0,j,l unconstrained for j < 0 so
that if a certificate exists, there will be a satisfying variable assignment.

3.3 DTM dynamics

The decision variables must evolve with each time step as a DTM. Specifically, at each step, the
state at the next step must update according to AQ, the head position must update according to
AH , and the symbol in the current square must update according to AS ; each of these, of course,
depending on the current state of the machine and the symbol in the current square. This is
accomplished by the following set of constraints:

Qi+1,AQ
k,l
≥ −2 + Hi,j + Si,j,l + Qi,k, ∀j, k, l, i < p(n), (12)

Hi+1,j+AH
k,l
≥ −2 + Hi,j + Si,j,l + Qi,k, ∀j, k, l, i < p(n), (13)

Si+1,j,AS
k,l
≥ −2 + Hi,j + Si,j,l + Qi,k, ∀j, k, l, i < p(n). (14)

For those constraints in particular the language of ZOIP modeling is much more convenient than
that of SAT. We must additionally ensure that all symbols other than the one being modified by
the read/write head remain unchanged:

Si+1,j,l ≥ Si,j,l −Hi,j , ∀j, k, l, i < p(n), (15)

Si+1,j,l ≤ Si,j,l + Hi,j , ∀j, k, l, i < p(n). (16)

When the DTM halts at some i < p(n), we wish for the decision variables to maintain the same
state, head position, and tape contents until i = p(n). This is accomplished by ensuring that in the

DTM update instructions AQ
2,l = 2, AQ

3,l = 3, AH
2,l = AH

3,l = 0, and AS
2,l = AS

3,l = l.
The constraints (1)-(16) ensure that the decision variables Q, H, and S are a faithful represen-

tation of a DTM applied to problem instance x.

4 Proof of NP-completeness

All that remains of the proof are one more constraint and a few simple arguments.
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Lemma 1. Consider a DTM M with problem instance x on the tape. The ZOIP instance given by
constraints (1)-(16), together with the constraint

Qp(n),2 = 1 (17)

is feasible if and only if there exists a certificate y such that when written on the tape, M enters
state yes by time step p(n).

Proof. We saw in Section 3 that the constraints in (1)-(16) ensure that the decision variables Q, H,
and S describe exactly the behavior of M . Now consider the addition of (17): Because the decision
variables Q are exactly the state of M , this constraint will be satisfied if and only if M enters state
yes (state 2) by time step p(n). A feasible assignment to the variables S0,j,l for j < 0 corresponds
to a valid certificate.

The main theorem, the analog of Cook’s theorem for ZOIP, follows directly.

Theorem 1. ZOIP is NP-complete.

Proof. We already discussed how ZOIP is in NP. It remains to be shown that an arbitrary problem
Π in NP is polynomially reducible to ZOIP. By the definition of NP, x is a yes instance of Π if
and only if for some certificate y, the DTM M corresponding to Π enters state yes in at most p(n)
steps. Now we use (1)-(17) to construct the ZOIP instance that models M . By Lemma 1, this
ZOIP instance is feasible (a yes instance) if and only if x is a yes instance to Π. It is easy to see
that there are a total of O(p(n)2) variables and O(p(n)2) constraints in the ZOIP instance, thus it
is a polynomial reduction.

5 Conclusions

In Cook’s foundational paper he showed that several problems of practical interest, such as SAT, are
NP-complete. Here we proved a similar result using ZOIP in the place of SAT that is notationally
cleaner and more straightforward to operations researchers, for whom the language of ZOIP is
more natural than that of SAT. This proof gives deeper insight to operations researchers into
Cook’s important result, and also provides a natural way to teach NP-completeness in an integer
programming course. In fact, many textbooks on integer programming discuss NP-completeness
and provide proofs of NP-completeness using reductions from other NP-complete problems, but do
not provide a proof of Cook’s theorem [7, 8, 9, for example]. The proof that we give here is a natural,
rigorous, and insightful way to discuss NP-completeness in the context of integer programming.
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