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1 Introduction and Notation

This work provides a fairly rigorous yet simultaneously informal introduction to Bayesian analysis intended
for those with an understanding of basic probability and interest in machine learning. We cover everything
from theoretical aspects of posterior asymptotics to practical considerations in MCMC sampling. This
section (Section 1) provides an introduction to the Bayesian approach and the necessary notation. In Section
2 we move to point estimation, specifically maximum likelihood and maximum a posteriori estimation and
discuss a fascinating connection between Bayesian regression and ridge regression. Section 3 introduces
exponential families and conjugate priors, which are crucial for constructing tractable Bayesian models.
Section 4 discusses posterior asymptotics, and addresses the issue of what will happen if the model is wrong.
Section 5 discusses hierarchical modeling and the extremely popular topic models. We finish in Section 6
with a discussion of MCMC sampling.

Most popular machine learning tools (SVM, Boosting, Decision Trees,...) are fairly agnostic to how
the data were generated. In Bayesian analysis, we will work under the assumption that the data were
generated from a probability distribution. Given data, our goal then becomes to determine which probability
distribution generated the data. This is the essence of statistical inference.

Let us introduce some notation and some key definitions. We will suppose that we are given N data points
y1, . . . , yN , each of arbitrary dimension. Let y = {y1, . . . , yN} denote the full set of data. We will assume
that the data were generated from a probability distribution p(y|θ) that is described by the parameters θ (not
necessarily scalar). We call p(y|θ) a likelihood function or likelihood model for the data y, as it tells us how
likely the data y are given the model specified by θ. Before seeing the data, we must specify a distribution
over θ, p(θ). This distribution represents any knowledge we have about how the data are generated prior to
observing them, and will play a very important role later in this section. We call this the prior distribution.
Our end goal is the distribution p(θ|y), that is, which parameters are likely given the observed data. We call
this the posterior distribution.

We, the modeler, specify the likelihood function and the prior using our knowledge of the system at hand.
We then use these quantities, together with the data, to compute the posterior. The likelihood, prior, and
posterior are all related via Bayes’ rule:

p(θ|y) =
p(y|θ)p(θ)∫
p(y|θ′)p(θ′)dθ′

. (1)

Unfortunately the integral in the denominator, called the partition function, is often intractable. This is
what makes Bayesian analysis difficult, and a big portion of what follows will essentially be avoiding that
integral.

Coin flip example part 1. Suppose we have been given data from a series of N coin flips, and we are not
sure if the coin is fair or not. We might assume that the data were generated by a sequence of independent
draws from a Bernoulli distribution, which is parameterized by θ the probability of flipping Heads. Let
yi = 1 if flip i was Heads, and yi = 0 otherwise. Then the likelihood model is,

p(y|θ) = θ
∑N

i=1 yi(1− θ)(N−
∑N

i=1 yi).
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To determine which Bernoulli distribution generated these data, we might estimate θ as the proportion of
the data which are Heads. We will see shortly that this is a principled approach.

1.1 A note on the Bayesian approach

The problem formulation we have just described has historically been a source of much controversy in
statistics. There are generally two subfields of statistics: frequentist (or classical) statistics, and Bayesian
statistics. Although many of the techniques overlap, there is a fundamental difference in philosophy. In the
frequentist approach, θ is an unknown, but deterministic quantity. The goal in frequentist statistics is then
to determine the range of values for θ that is supported by the data (called a confidence interval). When
θ is viewed as a deterministic quantity, it is nonsensical to talk about its probability distribution. One of
the greatest statisticians of our time, Fisher, wrote that Bayesian statistics “is founded upon an error, and
must be wholly rejected.” Another of the great frequentists, Neyman, wrote that, “the whole theory would
look nicer if it were built from the start without reference to Bayesianism and priors.” Nevertheless, recent
advances in theory and particularly in computation have shown Bayesian statistics to be very useful for
many applications.

2 Point estimates

Rather than estimate the entire distribution p(θ|y), sometimes it is sufficient to find a single ‘good’ value for
θ. We call this a point estimate. For the sake of completeness, we will briefly discuss two widely used point
estimates, the maximum likelihood (ML) estimate and the maximum a posteriori (MAP) estimate.

2.1 Maximum likelihood estimation

The ML estimate for θ is denoted θ̂ML and is the value for θ under which the data are most likely:

θ̂ML ∈ arg max
θ
p(y|θ). (2)

As a practical matter, when computing the maximum likelihood estimate it is often easier to work with the
log-likelihood, `(θ) := log p(y|θ). Because the logarithm is monotonic,

θ̂ML ∈ arg max
θ
`(θ). (3)

The ML estimator is very popular and has been used all the way back to Laplace. It has a number of nice
properties, one of which is that it is a consistent estimator.

Definition 1. Suppose the data y1, . . . , yN were generated by a probability distribution p(y|θ0). An esti-

mator θ̂ is consistent if it converges in probability to the true value: θ̂
P−→ θ0 as N →∞. An estimator θ̂ is

strongly consistent if it converges almost surely: θ̂
a.s.−−→ θ0 as N →∞.

Under some reasonable conditions, θ̂ML is strongly consistent. Thus, if the distribution that generated
the data belongs to the family defined by our likelihood model, maximum likelihood is guaranteed to find
the correct distribution, as N goes to infinity. Unfortunately, there are no small sample guarantees.

Coin flip example part 2. Returning to the coin flip example, the log-likelihood is,

`(θ) =

(
N∑
i=1

yi

)
log θ +

(
N −

N∑
i=1

yi

)
log(1− θ).
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We can maximize this easily by differentiating and setting to zero, and doing a few lines of algebra:

d`(θ)

dθ
=

(
N∑
i=1

yi

)
1

θ
−

(
N −

N∑
i=1

yi

)
1

1− θ
:= 0

N∑
i=1

yi − θ̂ML

N∑
i=1

yi = Nθ̂ML − θ̂ML

N∑
i=1

yi

θ̂ML =

∑N
i=1 yi
N

. (4)

(It is easy to verify that this is indeed a maximum). In this case, the maximum likelihood estimate is exactly
what we intuitively thought we should do: estimate θ as the observed proportion of Heads.

2.2 Maximum a posteriori estimation

The MAP estimate is a pointwise estimate with a Bayesian flavor. Rather than finding θ that maximizes
the likelihood function, we find θ that maximizes the posterior. We don’t have to worry about evaluating
the partition function because it is constant with respect to θ. Again it is generally more convenient to work
with the logarithm.

θ̂MAP ∈ arg max
θ
p(θ|y) = arg max

θ

p(y|θ)p(θ)∫
p(y|θ′)p(θ′)dθ′

= arg max
θ
p(y|θ)p(θ) = arg max

θ
(log p(y|θ) + log p(θ)) . (5)

When the prior is uniform, the MAP estimate is identical to the ML estimate. For a reasonable choice of the
prior (i.e., one that does not assign zero probability to the true value of θ), the MAP estimate is consistent,
a fact that we will discuss in more detail later. Some other properties of the MAP estimate are illustrated
in the next example.

Coin flip example part 3. We again return to the coin flip example. Suppose we model θ using a Beta
prior (we will see later why this is a good idea): θ ∼ Beta(α, β). Recall the Beta distribution is,

Beta(θ;α, β) =
1

B(α, β)
θα−1(1− θ)β−1,

where B(α, β) is the beta function, and is constant with respect to θ. The quantities α and β are parameters
of the prior which we are free to set according to our prior belief about θ. The MAP estimate for θ is then,

θ̂MAP ∈ arg max
θ

(
N∑
i=1

yi

)
log θ +

(
N −

N∑
i=1

yi

)
log(1− θ) + (α− 1) log θ + (β − 1) log(1− θ)− logB(α, β).

Differentiating and setting to zero, we obtain that,

θ̂MAP =

∑N
i=1 yi + α− 1

N + β − 1 + α− 1
. (6)

This is a very nice result which illustrates some interesting properties of the MAP estimate. In particular,
comparing the MAP estimate in Equation 6 to the ML estimate in Equation 4, we see that the MAP estimate
is equivalent to the ML estimate of a data set with α− 1 additional Heads and β− 1 additional Tails. When
we specify, for example, a prior of α = 7 and β = 3, it is literally as if we had begun the coin tossing
experiment with 6 Heads and 2 Tails on the record. This can be very useful in reducing the variance of
the estimate for small samples. For example, suppose the data contain only one coin flip, a Heads. The
ML estimate will be θ̂ML = 1, which predicts that we will never flip tails! However, we, the modeler, know
that the coin is probably fair, and can assign α = β = 2 (or some other number with α = β), and we get

3



θ̂MAP = 2/3. The MAP estimate has smaller variance for small samples, and for large samples it is easy to
see in this example that the effect of the prior goes to zero:

lim
N→∞

θ̂MAP = lim
N→∞

θ̂ML = θtrue.

A useful interpretation of the MAP estimate is as a regularized version of the ML estimate.

Example 1. (Rare Events) The MAP estimate is also useful when dealing with rare events. Suppose we
are the administrator for a network and we wish to estimate the probability that a unit of traffic is a network
intrusion. Perhaps we monitor the traffic for a day, and there are no network intrusions. The ML estimate
tells us that the probability of a network intrusion is zero. The MAP estimate would allow us to incorporate
our prior knowledge that there is some probability of network intrusion, we just haven’t seen one yet.

2.3 Point estimation and probabilistic linear regression

We will now apply point estimation to a slightly more interesting problem, linear regression, and on the
way will discover some very elegant connections between agnostic machine learning algorithms and our new
probabilistic approach. Suppose now that we have N data points (x1, y1), . . . , (xN , yN ), where xi ∈ Rd are
the independent variables and yi ∈ R are the dependent variables. We will use a likelihood model under
which yi depends linearly on xi, and the yi’s are all independent. Specifically, we model,

yi ∼ θTxi + ε,

where θ ∈ Rd are the parameters we are interested in, and ε represents noise. We will assume that the
noise is distributed normally with zero mean and some known variance σ2: ε ∼ N (0, σ2). This, together
with our assumption of independence, allows us to express the likelihood function for the observations
y = {y1, . . . , yN}:

p(y|x, θ) =

N∏
i=1

p(yi|xi, θ) =

N∏
i=1

N (yi; θ
Txi, σ

2)

=

N∏
i=1

1√
2πσ2

exp

(
− 1

2σ2
(yi − θTxi)2

)
As usual, it is more convenient to work with the log-likelihood:

`(θ) = −N
2

log(2πσ2)− 1

2σ2

N∑
i=1

(yi − θTxi)2

The ML estimate is,

θ̂ML ∈ arg max
θ
`(θ) = arg max

θ
− 1

2σ2

N∑
i=1

(yi − θTxi)2

= arg min
θ

N∑
i=1

(yi − θTxi)2. (7)

The ML estimate is equivalent to ordinary least squares! Now let us try the MAP estimate. We saw in
our coin toss example that the MAP estimate acts as a regularizer to the ML estimate. For probabilistic
regression, we will use a multivariate normal prior (we will see later why this is a good idea) with mean 0
and introducing a new parameter λ that will contribute to the variance:

θ ∼ N (0, Iσ2/λ) =
1

(2π)d/2|Iσ2/λ|1/2
exp

(
−1

2
θT
(
Iσ2/λ

)−1
θ

)
.
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Now,

θ̂MAP ∈ arg max
θ

log p(y|x, θ) + log p(θ)

= arg max
θ
− 1

2σ2

N∑
i=1

(yi − θTxi)2 − d

2
log 2π − 1

2
log

σ2

λ
− 1

2
θT (Iλ/σ2)θ

= arg max
θ
− 1

2σ2

N∑
i=1

(yi − θTxi)2 − 1

2σ2
λθT θ

= arg min
θ

N∑
i=1

(yi − θTxi)2 + λ||θ||22. (8)

We see that the MAP estimate corresponds exactly to `2-regularized linear regression, and that the `2
regularization can be interpreted as a Gaussian prior. Increasing λ corresponds to increasing our certainty
that θ should be close to zero.

3 Conjugate priors

Although point estimates can be useful in many circumstances (and are used in many circumstances), our
true goal in Bayesian analysis is the full posterior, p(θ|y). We saw earlier that this can be obtained in
principle from the prior and the likelihood using Bayes’ rule, but that there is an integral in the denominator
which often makes this intractable. One approach to circumventing the integral is to use conjugate priors.

The appropriate likelihood function (Binomial, Gaussian, Poisson, Bernoulli,...) is typically clear from
the data. However, there is a great deal of flexibility when choosing the prior distribution. The key notion
of conjugate priors is that if we choose the ‘right’ prior for a particular likelihood function, then we can
compute the posterior without worrying about the integrating. We will formalize the notion of conjugate
priors and then see why they are useful.

Definition 2. Let F be a family of likelihood functions and P a family of prior distributions. P is a conjugate
prior to F if for any likelihood function f ∈ F and for any prior distribution p ∈ P, the corresponding
posterior distribution p∗ satisfies p∗ ∈ P.

It is easy to find the posterior when using conjugate priors because we know it must belong to the same
family of distributions as the prior.

Coin flip example part 4. We return yet again to the coin flip example. In our previous example, we
were very wise to use a Beta prior for θ because the Beta distribution is the conjugate prior to the Bernoulli
distribution. Let us see what happens when we compute the posterior:

p(θ|y) =
p(y|θ)p(θ)∫ 1

0
p(y|θ′)p(θ′)dθ′

=
θ
∑N

i=1 yi+α−1(1− θ)N−
∑N

i=1 yi+β−1∫ 1

0
θ′

∑N
i=1 yi+α−1(1− θ′)N−

∑N
i=1 yi+β−1dθ′

.

We can recognize the Beta integral in the denominator,

p(θ|y) ==
1

B(
∑N
i=1 yi + α,N −

∑N
i=1 yi + β)

θ
∑N

i=1 yi+α−1(1− θ)N−
∑N

i=1 yi+β−1,

and we recognize this as being a Beta distribution:

p(θ|y) ∼ Beta

(
N∑
i=1

yi + α,N −
N∑
i=1

yi + β

)
. (9)

As with the MAP estimate, we can see the interplay between the data yi and the prior parameters α and β
in forming the posterior. As before, the exact choice of α and β does not matter asymptotically, the data
overwhelm the prior.
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Likelihood Conjugate Prior Posterior
prior hyperparameters hyperparameters

Bernoulli Beta α, β α+
∑N
i=1 yi, β +N −

∑N
i=1 yi

Binomial Beta α, β α+
∑N
i=1 yi, β +

∑N
i=1Ni −

∑N
i=1 yi

Poisson Gamma α, β α+
∑N
i=1 yi, β +N

Geometric Beta α, β α+N, β +
∑N
i=1 yi

Uniform on [0, θ] Pareto xm, k max{max yi, xm}, k + n

Exponential Gamma α, β α+N, β +
∑N
i=1 yi

Normal, unknown mean, Normal µ0, σ
2
0

(
µ0

σ2
0

+ 1
σ2

∑N
i=1 yi

)
/
(

1
σ2
0

+ n
σ2

)
,
(

1
σ2
0

+ n
σ2

)−1

known variance σ2

Figure 1: A summary of some useful conjugate priors.

Knowing that the Beta distribution is the conjugate prior to the Bernoulli, we could have saved a few
steps in the above by recognizing that,

p(θ|y) ∝ p(y|θ)p(θ) = θ
∑N

i=1 yi+α−1(1− θ)N−
∑N

i=1 yi+β−1, (10)

and then realizing that by the definition of a conjugate prior, the posterior must be a Beta distribution.
There is exactly one Beta distribution that satisfies Equation 10, and that is Equation 9.

The parameters of the prior distribution (α and β in the case of the Beta prior) are called prior hyper-
parameters. We choose them to best represent our beliefs about the distribution of θ. The parameters of
the posterior distribution are often called posterior hyperparameters. Anytime a likelihood model is used
together with its conjugate prior, we know the posterior is from the same family of the prior, and moreover
we have an explicit formula for the posterior hyperparameters. A table summarizing some of the useful
conjugate prior relationships is in Figure 1. There are many more conjugate prior relationships that are not
shown in Figure 1 but that can be found in reference books on Bayesian statistics1.

3.1 Exponential families and conjugate priors

There is an important connection between exponential families (not to be confused with the exponential
distribution) and conjugate priors.

Definition 3. The family of distributions F is an exponential family if every member of F has the form:

p(yi|θ) = f(yi)g(θ) exp
(
φ(θ)Tu(yi)

)
, (11)

for some f(·), g(·), φ(·), and u(·).

Essentially all of the distributions that we typically work with (normal, exponential, Poisson, beta,
gamma, binomial, Bernoulli,...) are exponential families. The next theorem tells us when we can expect to
have a conjugate prior.

Theorem 1. If the likelihood model is an exponential family, then there exists a conjugate prior.

1Bayesian Data Analysis by Gelman, Carlin, Stern, and Rubin is an excellent choice, and is the source for some of the
material in these notes.

6



Proof. Consider the likelihood of our iid data y = {y1, . . . , yN}:

p(y|θ) =

N∏
i=1

p(y|θ) =

[
N∏
i=1

f(yi)

]
g(θ)N exp

(
φ(θ)T

N∑
i=1

u(yi)

)

Take the prior distribution to be:

p(θ) =
g(θ)η exp

(
φ(θ)T ν

)∫
g(θ′)η exp (φ(θ′)T ν) dθ′

, (12)

where η and ν are prior hyperparameters. Then, the posterior will be,

p(θ|y) ∝ p(y|θ)p(θ) =

[
N∏
i=1

f(yi)

]
g(θ)N exp

(
φ(θ)T

N∑
i=1

u(yi)

)
g(θ)η exp

(
φ(θ)T ν

)∫
g(θ′)η exp (φ(θ′)T ν) dθ′

∝g(θ)η+N exp

(
φ(θ)T

(
ν +

N∑
i=1

u(yi)

))
,

which is in the same family as the prior, with the posterior hyperparameters being η+N and ν+
∑N
i=1 u(yi).

Although this proof yields the form of the conjugate prior, we may not always be able to compute the
partition function. In these cases, the result is for practical purposes existential. It turns out that in general,
the converse to Theorem 1 is true, and exponential families are the only distributions with (non-trivial)
conjugate priors.

Coin flip example part 5. Returning again to the coin flip example, let us first verify that the Bernoulli
distribution is an exponential family:

p(yi|θ) = θyi(1− θ)1−yi

= exp (yi log θ + (1− yi) log(1− θ))
= exp (yi log θ − yi log(1− θ) + log(1− θ))

= (1− θ) exp

(
yi log

θ

1− θ

)
,

and we see that the Bernoulli distribution is an exponential family according to Equation 11 with f(yi) = 1,
g(θ) = 1− θ, u(yi) = yi, and φ(θ) = log θ

1−θ . Thus, according to Equation 12, the conjugate prior is,

p(θ) ∝ g(θ)η exp
(
φ(θ)T ν

)
= (1− θ)η exp

(
ν log

θ

1− θ

)
= (1− θ)η

(
θ

1− θ

)ν
= θν(1− θ)η−ν .

Reparameterizing with α = ν + 1 and β = η − ν + 1 gives us the Beta distribution that we expect.

4 Posterior asymptotics

Up to this point, we have defined a likelihood model that is parameterized by θ, assigned a prior distribution
to θ, and then computed the posterior p(θ|y). There are two natural questions which arise. First, what if we
choose the ‘wrong’ likelihood model? That is, what if the data were actually generated by some distribution
q(y) such that q(y) 6= p(y|θ) for any θ, but we use p(y|θ) as our likelihood model? Second, what if we assign
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the ‘wrong’ prior? We can answer both of these questions asymptotically as N →∞. First we must develop
a little machinery from information theory.

A useful way to measure the dissimilarity between two probability distributions is the Kullback-Leibler
(KL) divergence, defined for two distributions p(y) and q(y) as:

D(q(·)||p(·)) := Ey∼q(y)

[
log

q(y)

p(y)

]
=

∫
q(y) log

q(y)

p(y)
dy.

This is sometimes referred to as the KL distance, however it is not a metric in the mathematical sense because
in general it is asymmetric: D(q(·)||p(·)) 6= D(p(·)||q(·)). The following property of the KL divergence will
be very important for us.

Theorem 2. D(q(·)||p(·)) ≥ 0 with equality if and only if q(y) = p(y)∀y.

Proof. We will rely on Jensen’s inequality, which states that for any convex function f and random variable
X,

E[f(X)] ≥ f(E[X]).

When f is strictly convex, Jensen’s inequality holds with equality if and only if X is constant. Take y ∼ q(y)

and define the random variable X = p(y)
q(y) . Let f(X) = − log(X), a strictly convex function. Now we can

apply Jensen’s inequality:

E[f(X)] ≥f(E[X])

−
∫
q(y) log

p(y)

q(y)
dy ≥− log

(∫
q(y)

p(y)

q(y)
dy

)
−
∫
q(y) log

p(y)

q(y)
dy ≥− log

(∫
p(y)dy

)
−
∫
q(y) log

p(y)

q(y)
dy ≥− log 1∫

q(y) log
q(y)

p(y)
dy ≥ 0,

with equality under the same conditions required for equality in Jensen’s inequality: if and only if X is
constant, that is, q(y) = p(y)∀y.

We will use the KL divergence to find the distribution from the likelihood family that is ‘closest’ to the
true generating distribution:

θ∗ = arg min
θ∈Θ

D(q(·)||p(·|θ)). (13)

For convenience, we will suppose that the arg min in Equation 13 is unique, as this is typically the case. The
results can be easily extended to the case where the arg min is not unique. The main results of this section
are two theorems, the first for discrete parameter spaces and the second for continuous parameter spaces.

Theorem 3. Let F be a finite family of likelihood models, with Θ = {θ : p(·|θ) ∈ F} the discrete parameter
space. Let y = (y1, . . . , yN ) be a set of independent samples from an arbitrary distribution q(·), and θ∗ be as
in Equation 13. If p(θ = θ∗) > 0, then p(θ = θ∗|y)→ 1 as N →∞.

Proof. Consider any θ 6= θ∗:

log
p(θ|y)

p(θ∗|y)
= log

p(θ)p(y|θ)
p(θ∗)p(y|θ∗)

= log
p(θ)

p(θ∗)
+

n∑
i=1

log
p(yi|θ)
p(yi|θ∗)
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For each term in the sum,

E

[
log

p(yi|θ)
p(yi|θ∗)

]
= E

[
log

p(yi|θ)q(yi)
p(yi|θ∗)q(yi)

]
= E

[
log

q(yi)

p(yi|θ∗)
− log

q(yi)

p(yi|θ)

]
= D(q(·)||p(·|θ∗))−D(q(·)||p(·|θ))
< 0,

from the definition of θ∗ in Equation 13. By the strong law of large numbers, with probability 1,

n∑
i=1

log
p(yi|θ)
p(yi|θ∗)

→ nE

[
log

p(yi|θ)
p(yi|θ∗)

]
= −∞.

By supposition, p(θ∗) > 0. Thus,

log
p(θ)

p(θ∗)
+

n∑
i=1

log
p(yi|θ)
p(yi|θ∗)

→ −∞,

and,

log
p(θ|y)

p(θ∗|y)
→ −∞ implies p(θ|y)→ 0.

This holds for every θ 6= θ∗, thus p(θ∗|y)→ 1.

This theorem tells us that the posterior eventually becomes concentrated on the value θ∗ corresponding to
the likelihood model that is ‘closest’ in the KL sense to the true generating distribution q(·). If q(·) = p(·|θ0)
for some θ0 ∈ Θ, then θ∗ = θ0 is the unique minimizer of Equation 13 and the theorem tells us that the
posterior will become concentrated around the true value. This is only the case if in the prior, p(θ∗) > 0,
which shows the importance of choosing a prior that assigns non-zero probability to every plausible value of
θ.

We now present the continuous version of Theorem 3, but the proof is quite technical and is omitted.

Theorem 4. If Θ is a compact set, θ∗ is defined as in Equation 13, A is a neighborhood of θ∗, and
p(θ∗ ∈ A) > 0, then p(θ ∈ A|y)→ 1 as N →∞.

These theorems show that asymptotically, the choice of the prior does not matter as long as it assigns
non-zero probability to every θ ∈ Θ. They also show that if the data were generated by a member of the
family of likelihood models, we will converge to the correct likelihood model. If not, then we will converge
to the model that is ‘closest’ in the KL sense.

We give these theorems along with a word of caution. These are asymptotic results that tell us absolutely
nothing about the sort of N we encounter in practical applications. For small sample sizes, poor choices of
the prior or likelihood model can yield poor results and we must be cautious.

Coin flip example part 6. Suppose that the coin flip data from previous examples came from a biased coin
with a 3/4 probability of Heads, but we restrict the likelihood model to only include coins with probability
in the interval [0, 1/2]:

p(y|θ) = θ
∑N

i=1 yi(1− θ)(N−
∑N

i=1 yi), θ ∈ [0, 1/2].

This time we will use a uniform prior, p(θ) = 2, θ ∈ [0, 1/2]. The posterior distribution is then,

p(θ|y) =
θ
∑N

i=1 yi(1− θ)N−
∑N

i=1 yi∫ 1/2

0
θ′

∑N
i=1 yi(1− θ′)N−

∑N
i=1 yidθ′

.

The partition function is an incomplete Beta integral, which has no closed form but can easily be solved
numerically. In Figure 2, we draw samples iid from the true distribution (3/4 probability of Heads) and
show how the posterior becomes increasingly concentrated around θ = 0.5, the closest likelihood function to
the true generating distribution.
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Figure 2: The posterior for a coin toss likelihood model that restricts θ to the interval [0, 1/2] applied to
data generated by a coin with θ = 3/4.
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5 Hierarchical modeling

Hierarchical models are a powerful application of Bayesian analysis. The general idea is to construct a
generative model for the data under which unobserved model components are related in a hierarchical
manner via conditional probability distributions. This is best explained by example, so we will develop a
hierarchical model for topic modeling, an important information retrieval problem.

5.1 Topic models

Suppose we have been given a collection of m documents and we wish to determine how the documents
are related. For example, if the documents are all news articles, the article “Patriots game canceled due to
hurricane” is related to the article “New York Giants lose superbowl” because they are both about football.
The article “Patriots game canceled due to hurricane” is also related to the article “Record snowfall in
May” because they are both about the weather. We will now develop a hierarchical model for finding
topic relationships between documents in an unsupervised setting. The method is called Latent Dirichlet
Allocation (LDA) and it was developed by, among others, the well-known statistician Michael Jordan.

5.1.1 LDA formulation

The model has several components. The data are m documents, with document i consisting of ni words.
Each word in the document will be associated with one of K topics. We let zi,j denote the topic of word j
in document i. We model zi,j ∼ Multinomial(θi), where θi ∈ RK describes the topic mixture of document
i. For each topic, we define a multinomial distribution over all possible words. For example, given the topic
is “Sports”, the probability of having the word “football” might be high; if the topic were “Weather”, the
probability of having the word “football” might be lower. Other words, like “the” will have a high probability
regardless of the topic. If words are chosen from a set of W possible words, then we let φk ∈ RW be the
multinomial parameter over words for topic k. Word j of document i, denoted wi,j , will be generated by
the distribution over words corresponding to the topic zi,j : wi,j ∼ Multinomial(φzi,j ). Finally, we give prior
distributions for the parameters θi and φk. The multinomial distribution is a generalization of the binomial
distribution, and its conjugate prior is a generalization of the beta distribution: the Dirichlet distribution.
Thus we model the data with the following generative model:

1. For document i = 1, . . . ,m, choose the document’s topic distribution θi ∼ Dirichlet(α), where α ∈ RK
is the prior hyperparameter.

2. For topic k = 1, . . . ,K, choose the topic’s word distribution φk ∼ Dirichlet(β), where β ∈ RW is the
prior hyperparameter.

3. For document i = 1, . . . ,m:

For word j = 1, . . . , ni:

Choose the topic for this word zi,j ∼ Multinomial(θi).

Choose the word wi,j ∼ Multinomial(φzi,j ).

5.2 Graphical representation

Hierarchical models are illustrated with a node for every variable and arcs between nodes to indicate the
dependence between variables. We give the graphical representation for LDA and then describe it:

11



Graphs representing hierarchical models must be acyclic. For any node x, we define Parents(x) as the
set of all nodes with arcs to x. The hierarchical model consists of, for every node x, the distribution
p(x|Parents(x)). Define Descendants(x) as all nodes that can be reached from x and Non-descendants(x)
as all other nodes. Because the graph is acyclic and the distribution for each node depends only on its
parents, given Parents(x), x is conditionally independent from Non-descendants(x). This is a powerful fact
about hierarchical models that is important for doing inference. In the graph for LDA, this means that,
for example, zi,j is independent of α, given θi. In addition to the graph structure, we use plates to denote
repeated, independent draws from the same distribution. The hierarchical nature of the model is clear from
the graphical representation.

Coin flip example part 7. Even simple models like the coin flip model can be represented graphically.
The by-now-very-familiar coin flip model is:

5.3 Inference in hierarchical models

Hierarchical models are useful and powerful because they allow us to model complex interactions between the
observed variables (in this case the words in each document) through the use of latent (or hidden) variables.
Despite introducing a larger number of latent variables than we have observed variables, because of their
additional structure hierarchical models are generally not as prone to overfitting as, for instance, regression
is.

We are interested in infering the posterior distribution for the latent variables. Let Z = {zi,j}i=1,...,m,j=1,...,ni
,

θ = {θi}i=1,...,m, φ = {φk}k=1,...,K , and W = {wi,j}i=1,...,m,j=1,...,ni
. Then, by Bayes’ rule, ignoring the con-

stant denominator, we can express the posterior as:

p(Z, θ, φ|w,α, β) ∝ p(w|Z, φ, θ, α, β)p(Z, θ, φ|α, β) (14)

We will look at each of these pieces and show that they have a compact analytical form.

p(w|Z, φ, θ, α, β) =

m∏
i=1

ni∏
j=1

p(wi,j |Z, φ, θ, α, β) By iid

=

m∏
i=1

ni∏
j=1

p(wi,j |zi,j , φ) By conditional independence

=

m∏
i=1

ni∏
j=1

Multinomial(wi,j ;φzi,j ) By definition.

Also,
p(Z, θ, φ|α, β) = p(Z, θ|α)p(φ|β)

by conditional independence. Again considering each term,

p(Z, θ|α) = p(Z|θ, α)p(θ|α),

where,

p(Z|θ, α) = p(Z|θ) =

m∏
i=i

ni∏
j=1

p(zi,j |θi) =

m∏
i=i

ni∏
j=1

Multinomial(zi,j ; θi),
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by conditional independence, iid, and definition as before. Further,

p(θ|α) =

m∏
i=1

p(θi|α) =

m∏
i=1

Multinomial(θi;α),

and,

p(φ|β) =

K∏
k=1

p(φk|β) =

K∏
k=1

Multinomial(φk;β).

Plugging all of these pieces back into Equation 14, we obtain,

p(Z, θ, φ|w,α, β) ∝
m∏
i=1

ni∏
j=1

Multinomial(wi,j ;φzi,j )

m∏
i=i

ni∏
j=1

Multinomial(zi,j ; θi)×

m∏
i=1

Multinomial(θi;α)

K∏
k=1

Multinomial(φk;β). (15)

For any given Z, θ, φ, w, α, and β, we can easily evaluate Equation 15. We will see in the next section that
this is sufficient to be able to simulate draws from the posterior.

Even using conjugate priors, in general it will not be possible to recover the posterior analytically for
hierarchical models of any complexity. We will rely on (among a few other options) sampling methods like the
Monte Carlo Markov Chains (MCMC) that we discuss in the next section. What the statistics community
call Bayesian hierarchical models are in the machine learning community often treated as a special case of
Bayesian graphical models (specifically, directed acyclic graphs).

6 Markov Chain Monte Carlo sampling

With more complex Bayesian models, like the hierarchical models we discuss later, even with conjugate
priors we are unable to express the posterior analytically. The reason Bayesian statistics are so widely used
is because of the development of computational methods for drawing samples from the posterior distribution.
Even though we are unable to express the posterior analytically, with enough samples we can compute
statistics of the posterior with arbitrary precision. This approach is called Monte Carlo simulation. We will
describe two commonly used monte carlo methods, which both fall under the umbrella of Markov Chain
Monte Carlo (MCMC) methods: the Metropolis-Hastings algorithm, and Gibbs’ sampling.

6.1 Metropolis-Hastings algorithm

The goal in MCMC is to construct a Markov Chain whose stationary distribution is the posterior p(θ|y).
First we give some definitions and summarize some important properties of Markov chains. A continu-
ous state Markov chain is a sequence of random variables θ1, θ2, . . . that satisfies the Markov property:
p(θt|θt−1, . . . , θ1) = p(θt|θt−1). The chain is homogenous if the probabilities do not change throughout the
sequence: p(θi|θi−1) = p(θj |θj−1) for any i and j. We can then define the transition kernel to be the
probability of transitioning from state θ to θ′: K(θ, θ′) = p(θ′|θ). We define πt(θ) to be the probability
distribution over possible states θ at time t: πt(θ) = pθt(θ). Then,

πt+1(θ) =

∫
πt(θ

′)K(θ′, θ)dθ′.

Under some conditions that will be satisfied by the chains we are interested in (specifically, irreducible,
aperiodic, and non-transient), the distributions π1, π2, . . . will converge to a unique stationary distribution
(or equilibrium distribution, or steady-state distribution) π∗ that satisfies:

π∗(θ) =

∫
π∗(θ′)K(θ′, θ)dθ′.
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A sufficient condition for π∗ to be the stationary distribution is the detailed balance equation:

K(θ, θ′)π∗(θ) = K(θ′, θ)π∗(θ′), for all θ, θ′. (16)

Now we are ready to present the Metropolis-Hastings algorithm. In addition to the distributions we have
already used (likelihood and prior), we will need a proposal distribution (or jumping distribution) Jt(θ, θ

′)
which will propose a new state θ′ given the current state θ. There are many options when choosing a proposal
distribution which we will discuss later.

Step 1. Choose a starting point θ0. Set t = 1.

Step 2. Sample θ∗ from the proposal distribution Jt(θ
t−1, ·). θt−1 → θ∗ is now the proposed move for time t.

Step 3. Compute the ratio,

α(θt−1, θ∗) = min

{
p(θ∗|y)Jt(θ

∗, θt−1)

p(θt−1|y)Jt(θt−1, θ∗)
, 1

}
= min

{
p(y|θ∗)p(θ∗)Jt(θ∗, θt−1)

p(y|θt−1)p(θt−1)Jt(θt−1, θ∗)
, 1

}
The fact that we can compute ratios of posterior probabilities without having to worry about the
normalization integral is the key to monte carlo methods.

Step 4. With probability α(θt−1, θ∗), accept the move θt−1 → θ∗ by setting θt = θ∗ and incrementing t← t+1.
Otherwise, discard θ∗.

Step 5. Until stationary distribution and the desired number of samples are reached, return to Step 2.

Because the proposal distribution and α(θt−1, θ∗) depend only on the current state, the sequence θ0, θ1, . . .
forms a Markov chain. What makes the Metropolis-Hastings algorithm special is the following theorem, which
shows that if we sample from the chain long enough, we will sample from the posterior.

Theorem 5. If Jt(θ, θ
′) is such that that the Markov chain θ0, θ1, . . . produced by the Metropolis-Hastings

algorithm has a unique stationary distribution, then the stationary distribution is p(θ|y).

Proof. We will give a proof for the case where Jt(θ, θ
′) = J(θ, θ′)∀t, so the chain is homogenous. To show

that p(θ|y) is the stationary distribution, it is sufficient to show that it satisfies Equation 16, the detailed
balance equation:

K(θ, θ′)p(θ|y) = K(θ′, θ)p(θ′|y), for all θ, θ′.

The transition kernel is,
K(θ, θ′) = J(θ, θ′)α(θ, θ′).

Take any θ and θ′, and without loss of generality, suppose that,

J(θ, θ′)p(θ|y) ≥ J(θ′, θ)p(θ′|y).

Then,

α(θ, θ′) =
J(θ′, θ)p(θ′|y)

J(θ, θ′)p(θ|y)
,

and α(θ′, θ) = 1. Now,

K(θ, θ′)p(θ|y) =J(θ, θ′)α(θ, θ′)p(θ|y)

=J(θ, θ′)p(θ|y)
J(θ′, θ)p(θ′|y)

J(θ, θ′)p(θ|y)

=J(θ′, θ)p(θ′|y)

=J(θ′, θ)α(θ′, θ)p(θ′|y)

=K(θ′, θ)p(θ′|y)
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We have now proven that the Metropolis-Hastings algorithm will eventually yield samples from the
posterior distribution. However, there are a number of important questions to be addressed. What proposal
distribution should we use? How many samples will it take for the chain to converge to the stationary
distribution? How will we know when the chain has reached its stationary distribution? We will discuss
these important issues after we provide some intuition into the Metropolis-Hastings algorithm and introduce
the Gibbs’ sampler.

6.1.1 Some intuition into the Metropolis-Hastings algorithm

To gain some intuition for the Metropolis-Hastings algorithm, consider the slightly more simple case when the
proposal distribution is symmetric: Jt(θ, θ

′) = Jt(θ
′, θ). Then, we accept the move θ → θ′ with probability,

α(θ, θ′) = min

{
p(θ′|y)

p(θ|y)
, 1

}
.

Consider now the two cases. If α(θ, θ′) = 1, then the posterior value for θ′ is larger than the posterior value
for θ. Thus, for every accepted sample θ, we should have at least as many accepted samples θ′, and so we
always accept the transition θ → θ′. On the other hand, if α(θ, θ′) < 1, then α(θ, θ′) is the ratio of the
posterior value of θ′ to that of θ. For every accepted sample θ, we should have on average α(θ, θ′) accepted
values of θ′, and so we accept the transition with probability α(θ, θ′).

6.2 Gibbs’ Sampler

The Gibbs’ sampler is a very powerful MCMC sampling technique for the special situation when we have
access to conditional distributions. Let us express θ ∈ Rd as θ = [θ1, . . . , θd]. Suppose that even though
we are not able to sample directly from p(θ|y), we are able to sample from the conditional distribution
p(θj |θ1, . . . , θj−1, θj+1, . . . , θd, y). It turns out there are many situations like this when working with hierar-
chical models, which we will discuss later. The Gibbs’ sampler is the following very natural algorithm:

Step 1. Initialize θ0 = [θ0
1, . . . , θ

0
d]. Set t = 1.

Step 2. For j ∈ {1, . . . , d}, sample θtj from p(θj |θt1, . . . , θtj−1, θ
t−1
j+1, . . . , θ

t−1
d , y).

Step 3. Until stationary distribution and the desired number of samples are reached, increment t← t+ 1 and
return to Step 2.

In each iteration of the Gibbs’ sampler, we sequentially update each component of θt. We could do that
updating in any order, it does not have to be 1, . . . , d. To see that the Gibbs’ sampler will eventually yield
samples from the posterior p(θ|y), we will show that it is a special case of the Metropolis-Hastings algorithm.
The Gibbs’ sampler performs d component updates for every time step. we will treat each component update
as a time step in the Metropolis-Hastings algorithm: t = d(t′ − 1) + j, where j = 1, . . . , d represents the
component we are currently updating and t′ is the equivalent time step in the Gibbs’ sampler. We will set
the proposal distribution to ensure that θ∗ differs from θt−1 only on the j’th component:

Jt(θ
t−1, θ∗) = Jd(t′−1)+j(θ

t−1, θ∗) :=

{
p(θ∗j |θ

t−1
i6=j , y) if θ∗i = θt−1

i ∀i 6= j

0 otherwise
(17)
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Then, for any θ∗ that is proposed, the probability of accepting the move is,

α(θt−1, θ∗) =
p(θ∗|y)/Jt(θ

t−1, θ∗)

p(θt−1|y)/Jt(θ∗, θt−1)

=
p(θ∗|y)/p(θ∗j |θ

t−1
i 6=j , y)

p(θt−1|y)/p(θt−1
j |θ∗i 6=j , y)

=
p(θ∗|y)/p(θ∗j |θ∗i 6=j , y)

p(θt−1|y)/p(θt−1
j |θt−1

i 6=j , y)
because θ∗i 6=j = θt−1

i 6=j

=
p(θ∗i 6=j |y)

p(θt−1
i 6=j |y)

=1.

Thus every Metropolis-Hastings step is accepted, and the Metropolis-Hastings algorithm with the proposal
distribution in Equation 17 is equivalent to the Gibbs’ sampler. This result (along with some properties of
the proposal distribution) guarantees that the Gibbs’ sampler will converge to the posterior p(θ|y).

6.3 Practical considerations

Now that we have seen the general idea of MCMC algorithms and some theory behind them, let us dive into
the details.

6.3.1 Proposal distributions

To guarantee existence of a stationary distribution, all that is required (with rare exceptions) is for the
proposal distribution Jt(·, ·) to be such that there is a positive probability of eventually reaching any state
from any other state. A typical proposal distribution is a random walk J(θ, θ′) = N (θ, σ2) for some σ2.
There are several important features of proposal distributions that work well in practice. First, we must
be able to sample from it efficiently. Second, we must be able to compute the ratio α(θ, θ′) in an efficient
way. Third, the jumps should not be too large or we will reject them frequently and the chain will not move
quickly. Fourth, the jumps should not be too small or it will take a long time to explore the whole space.
The balance between ‘too small’ and ‘too large’ is the subject of hundreds of papers on ‘adaptive MCMC’,
but there is really no good way to know which proposal distribution to use. In practice, we often try several
proposal distributions to see which is most appropriate, for example, by adjusting σ2 in the above proposal
distribution.

6.3.2 On reaching the stationary distribution

Unfortunately, it is impossible to know how many iterations it will take to reach the stationary distribution,
or even to be certain when we have arrived. This is probably the largest flaw in MCMC sampling. There are
a large number of heuristics which are used to assess convergence, which generally involve looking at how
θt varies with time. In general, the initial samples depend strongly on the starting point and are thrown
away. This is referred to as burn-in, and often involves discarding the first half of all samples. To reduce
the effect of autocorrelations between samples, we typically only store a small fraction of them, for example
we store only 1 out of every 1000 accepted samples. This process is called thinning. Finally, we can assess
convergence by comparing the distribution of the first half of stored samples to the distribution of the second
half of stored samples. If the chain has reached its stationary distribution, these should be the same. These
(and similar) approaches have been shown to be successful in practice. Unfortunately, there is no way to be
entirely certain that we are truly drawing samples from the posterior and we must be very cautious.

Coin flip example part 8. Let us return to our coin flip example a final time. We will draw samples from
the posterior using the Metropolis-Hastings algorithm. Our model has a scalar parameter θ ∈ [0, 1]. Our
proposal distribution Jt(θ

t−1, θ∗) will be uniform on an interval of size r around θt−1:

Jt(θ
t−1, θ∗; r) =

{
1
r if θ∗ ∈ [θt−1 	 r

2 , θ
t−1 ⊕ r

2 ]
0 otherwise
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Figure 3: The proposed MCMC samples for the coin toss example with r = 0.01.

where ⊕ and 	 represent addition and subtraction on [0, 1], e.g., 0.7⊕ 0.5 = 0.2. Notice that this proposal
distribution is symmetric: Jt(θ

t−1, θ∗; r) = Jt(θ
∗, θt−1; r). We accept the proposed θ∗ with probability,

α(θt−1, θ∗) = min

{
p(y|θ∗)p(θ∗)Jt(θ∗, θt−1; r)

p(y|θt−1)p(θt−1)Jt(θt−1, θ∗; r)
, 1

}
= min

{
p(y|θ∗)p(θ∗)

p(y|θt−1)p(θt−1)
, 1

}
= min

{
(θ∗)

∑N
i=1 yi+α−1(1− θ∗)N−

∑N
i=1 yi+β−1

(θt−1)
∑N

i=1 yi+α−1(1− θt−1)N−
∑N

i=1 yi+β−1
, 1

}
,

which we can easily compute. This formula and a uniform random number generator for the proposal
distribution are all that is required to implement the Metropolis-Hastings algorithm. Consider the specific
case of N = 25,

∑N
i=1 yi = 6, and α = β = 5. Figures 3, 4, and 5 show the proposals θ∗ for chains

with r = 0.01, r = 0.1, and r = 1 respectively, with the colors indicating whether each proposed θ∗ was
accepted or not. The chain in Figure 3 shows that with r = 0.01, the step sizes are too small and after
2000 proposals we have not reached the stationary distribution. On the other hand, the chain in Figure 5
shows that with r = 1 the steps are too large and we reject most of the proposals. This leads to a small
number of accepted samples after 2000 proposals. The chain with r = 0.1, in Figure 4 is the happy medium,
where we rapidly reach the stationary distribution, and accept most of the samples. To compare this to the
analytic distribution that we obtained in Equation 9, we run a chain with r = 0.1 until we have collected
25,000 accepted samples. We then discard the initial 200 samples (burn-in) and keep one out of every 100
samples from what remains (thinning). A normalized histogram of the resulting samples is compared to the
analytical posterior in Figure 6. The running time to generate the MCMC samples in Figure 6 was less than
a second, and they are a reasonable approximation to the posterior.
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Figure 4: The proposed MCMC samples for the coin toss example with r = 0.1.

Figure 5: The proposed MCMC samples for the coin toss example with r = 1.

18



Figure 6: The MCMC and analytical posteriors for the coin toss example.

19


